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optimisation algorithm, termed differential evolution (DE), is used to optimise the ANN’s initial connection
weights and bias. The study adopts several ANNs with fixed architecture to predict PCDD/Fs emissions, each

consisting of a multilayer perceptron (MLP) with a backpropagation algorithm. Eight input variables and one
output variable were adopted to train and test various neural network architectures using real-world datasets.
The model optimisation procedure was conducted to ascertain the network architecture with the best predictive
accuracy. The evolved ANN based on 5 hidden neurons, with the assistance of self-adaptive ensemble-based
differential evolution with enhanced population sizing (SAEDE-EP), successfully produced the lowest MSE st
(6.1790 x 1073) and highest R? (0.97447) based on the mean among the other HNs. An evolutionary-optimised
ANN-based methodology is a viable solution to predict PCDD/Fs in peat soil. It is cost-effective for pollution
control, environmental monitoring and capable of aiding authorities prevent PCDD/Fs exposure, e.g., during a

fire.

1. Introduction

Peatlands play a vital role in the global ecosystem serving as carbon
sinks and providing critical ecological services. However, the degrada-
tion of peatlands can lead to the release of harmful pollutants, including
polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans
(PCDD/Fs), posing significant environmental and health risks. Dioxins
are the collective name for 210 different polychlorinated dibenzo-p-
dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). The
most potent dioxin congener is 2,3,7,8-tetrachlorodibenzo-p-dioxin
(TCDD), classified as a Class 1 human carcinogen by the International
Agency for Research on Cancer (IARC, 1997).

Peat is primarily derived from plant components such as roots,
leaves, stems, small insects and animals. It is composed of organic ma-
terials, including carbohydrates and lignins, which can serve as pre-
cursors for PCDD/Fs formation when burned. Any process that involves
chlorine or chloride has the potential to generate PCDD/Fs. Extensive
research has been conducted on PCDD/Fs emission from combustion
sources such as medical and municipal solid waste (MSW) incinerators.
Even small amounts of organic or inorganic chloride can produce low
levels of PCDD,/Fs emissions (approximately 10 x 9 to 10 x 12 g Nm™>)
during combustion processes (Uloth et al., 2005).

Peat soil in Malaysia covers approximately 7% or 2.5 million hect-
ares of the country’s land area, and peat fires are a recurrent issue.
Malaysian tropical peat is typically highly acidic, with a pH range of
2.68-4.50 (Andriesse, 1988; Kononen et al., 2015; Sutejo et al., 2017).
This suggests that the presence of high levels of chlorine and/or other
organic acids could lead to PCDD/Fs emissions during combustion.
Burning peat produces a smouldering fire that can occur on both the
surface and underground layers of the peat. This burning process can last
for an extended period, ranging from several days to even months.
During this time, the temperature can reach between 450 and 700 °C,
potentially creating the formation of PCDD/Fs through either the “ho-
mogeneous” or “heterogeneous” pathway (Rein, 2016). This condition
has worsened over the past few decades after many tropical peatlands
were converted to agricultural farms where herbicides are commonly
used. The risks of PCDD/Fs formation at such sites are further amplified
when fires occur.

Determining the level of PCDD/Fs emission through analytical
methods is a tedious process requiring advanced instruments, expensive
chemicals and standards, as well as skilled laboratory staff. As such, it
involves higher costs and a significant amount of time. Hence, predicting
PCDD/Fs emission concentrations using mathematical modelling and
machine learning methods is a potentially cost-effective alternative.
Several studies have reported the prediction of PCDD/Fs emission by
using these approaches. A study by Blumenstock et al. (1999) investi-
gated the estimation of PCDD/Fs emission in the fuel and stack gas of a
hazardous waste incinerator. They utilised the principal component
analysis (PCA) method and correlation coefficients through linear
regression to establish the relationships between PCDD/Fs emission and
potential indicator substances. In another study, Choi et al. (2007)
employed multi-regression analysis to predict PCDD/Fs variations using
collected sampling data sets from seven MSW incinerators in Korea.

Bunsan et al. (2013) presented a PCDDs prediction model based on a
back-propagation neural network (BPNN), a promising method in
handling complex and non-linear data with the assistance of statistics in
selecting useful variables for modelling. They found that an artificial
neural network (ANN) architecture that consists of 5 input factors and 3
basic layers with 8 hidden nodes was suitable for PCDDs prediction
(Bunsan et al., 2013).

Several data-driven models, such as support vector machines (SVMs)
and neural networks have been used to solve dioxins prediction prob-
lems (Wang et al., 2008; Xiao et al., 2017; Tang et al., 2019). Chang and
Chen (2000) developed a PCDD/Fs emission model based on genetic
programming and neural network to establish the unknown mapping
relation among input features and PCDD/Fs. Bunsan et al. (2013) used
correlation and PCA analyses to determine easily detectable process
variables as input and construct a backpropagation neural network
(BPNN) framework to model PCDDs effectively. However, these
methods have their challenges due to the small sampling size, strong
collinearity among input features and uncertainty in the MSW inciner-
ation process, which can potentially lead to overfitting, local minimums,
and poor predictive performance stability (Bunsan et al., 2013). To
address these issues, Xia et al. (2020) developed a dioxins prediction
model with a hybrid integration method of random forest (RF) and
gradient boosting decision tree. However, it was not effective in per-
forming feature selection and analysis on MSW incineration process
variables. Hence, Qiao et al. (2021) proposed a dioxins emission con-
centration detection mechanism with a multilayer feature selection
strategy, while Tang et al. (2021a, 2021b) suggested an improved
feature reduction theme and selective ensemble algorithm for this pur-
pose. Ensemble learning appears to be a suitable strategy for modelling
dioxins prediction, and Xia et al. (2022) have proposed a dioxins
emission concentration prediction model based on an improved deep
forest regression (ImDFR) approach. The InDFR model outperforms the
BPNN, RF, extreme gradient boosting, and deep forest regression models
in terms of predictive performance and the lowest time cost (Xia et al.,
2022). Machine learning has been applied widely in solving complex
problems of solid waste-related issues, including forecasting PCDD/Fs
emission during the MSW incineration process. However, to our
knowledge, none of the research focuses on peatlands which are also
potential PCDD/Fs sources.

The objective of this study is to address the pressing need for accu-
rate and reliable PCDD/Fs prediction models for effective pollution
control and environmental monitoring in peatlands. ANN is known to be
able to capture complex nonlinear relationships, while evolutionary
optimisation algorithms enable the finetuning of model parameters to
maximise accuracy with limited available data. By integrating an ANN
with evolutionary algorithms (EA), the evolved ANN model aims to
improve the predictive capabilities while minimising the requirement
for extensive datasets, making it cost-effective and practical for real-
world applications.

The rest of this paper is organised as follows: Section 2 describes the
studies related to PCDD/Fs data collection and feature selection. Section
3 presents the methodology of our evolved ANN model, and Section 4
describes the experimental setup. Section 5 discusses the experimental
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results through analysis. Section 6 presents the conclusions and future
work.

2. Data collection and feature selection

The raw data of physico-chemical properties of peat soil samples
contain 22 features, including contents of moisture, ash, chloride and
humid acid. All the features are listed in supplementary material
(Table S1). To ensure accurate predictions of PCDD/Fs emissions, it is
essential to identify the relevant features that impact PCDD/Fs pro-
duction in tropical peat soil. The inclusion of irrelevant features may
affect the model’s accuracy, prolong the training process, and increase
computer memory usage. Thus, expert input and exploratory data
analysis were performed to select the potential features that could affect
PCDD/Fs formation or indicate high correlation with PCDD/Fs emis-
sions. Consequently, 8 features were selected as the input variables from
the 22 features to construct the PCDD/Fs prediction model (Table S2).
This feature filtering process helped to streamline the network model
and minimise training costs. The low correlation coefficients between
the 8 input features and total PCDD/Fs concentration indicate a weak
linear relationship (Table S3).

In this study, ANN-based PCDD/Fs prediction model was constructed
based on the PCDD/Fs emission data and selected features: depth of peat
soil, carbon-to-nitrogen ratio (C:N ratio), total humic acid (HA), phenol,
1,2,3-trichlorobenzene, chloride, Cu and Al contents. This is the first
study adopting these variables for PCDD/Fs prediction model. A total of
25 peat samples were randomly collected from three states (Johor,
Selangor and Terengganu), which have a high distribution of peat. These
samples were collected from five different locations, including three
plantations and two forest reserve areas. Sampling was conducted under
different environmental and geographical conditions to represent the
tropical peat of Peninsular Malaysia.

Sampling was done using an Auger core sampler by rotary drilling at
different depths: surface, 1-50 cm, 51-100 cm, 101-150 cm, and
151-200 cm. Physico-chemical properties and total concentration of
PCDD/Fs emission evolved with the different soil levels. The depths in
ascending order were recorded into levels O to 4 to be used as one of the
inputs to train the ANN model. C:N ratio determination was conducted
to characterise the amount of carbon relative to the amount of nitrogen
present in the peat samples. Analysis was performed using PerkinElmer
2400 Series II CHN Elemental Analyzer. Total HA in peat was analysed
using a combination of ISO 5073:2013 method for the extraction pro-
cedure and Javanshah and Saidi’s (2016) method using UV-Vis spec-
trophotometer. Two compounds with the most abundant (phenol and 1,
2,3-trichlorobenzene) among the 16 chlorobenzenes and chlorophenols
compounds were chosen for the PCDD/Fs modelling. Most of the sam-
ples were found to contain these two chemicals. In the chlorobenzenes
and chlorophenols analysis, soil samples were first extracted using an
Accelerated Solvent Extraction system, followed by quantification on
Shimadzu Gas Chromatography Mass Spectrometer QP2010 Ultra
equipped with Rtx-5MS with 30 m length, 0.25 mm ID and 0.25 pm df
for separation. In addition, two cation elements (Cu and Al) and one
anion (chloride) were selected for the modelling. The reason for
selecting Cu and Al in this study is because of their expected ability to
catalyse and retard PCDD/Fs formation respectively. Cations were
analysed using an Inductive Coupled Plasma — Optical Emission Spec-
troscopy while anion was analysed using Metrohm Ion Chromatography
instrumentation. The wet ashing method for sample extraction was
applied for both analyses. Total PCDD/Fs emission was determined
using High Resolution Gas Chromatography/High Resolution Mass
Spectrometry (HRGC/HRMS) 6890 Series Gas Chromatograph (Agilent,
USA) coupled to a JMS-800D mass spectrometer (JEOL, Japan) (Ying
et al., 2023). The separation of PCDD/Fs congeners was achieved by a
DB-5MS (60 m x 0.25 mm ID, 0.25 pm film thickness) column. Prior to
PCDD/Fs quantification using HRGC/HRMS, the sample underwent
pre-treatment procedures following the US EPA Method 1613 (USEPA,
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1994).
3. Methodology
3.1. Artificial neural networks (ANNs)

ANNs have been widely used to solve solid waste-related issues, and
their applications can be found in a review by Xu et al. (2021). Based on
Xu’s work, a single hidden layer is commonly sufficient to solve the
prediction problems related to solid waste management. Xu’s work also
recommends researchers optimise the number of hidden layer nodes
within at least 4-20 due to its maximum probability. It is suggested,
therefore, that a shallow neural network instead of a deep neural
network (DNN) be used to solve this problem. As such, a similar range of
hidden neurons (HN) for the architecture of ANNs was used in this study.
The performances of the ANNs are tested with different HN, i.e., 5, 10,
15 and 20. The ANNs are denoted as 5SHN, 10HN, 15HN and 20HN,
based on their number of HN.

Using ANNs does pose uncertainties: data set participation and
ANNSs’ initial weight. A cross validation method can overcome the un-
certainties derived from data set participation. Hence, we use similar
approaches to reduce the uncertainties. Our model employs cross vali-
dation and optimisation of ANN’s initial connection weights.

Based on the work performed by Xu et al. (2021), only five articles
focus on using EA to optimise the ANNs’ initial connection weights. Four
articles adopted genetic algorithms (Bagheri et al., 2015; Lu et al., 2016;
Oliveira et al., 2019; Soni et al., 2019), and one adopted particle swarm
optimisation (PSO) (Ebrahimzade et al., 2020) to optimise the ANNs’
initial connection weights. In contrast to the existing work, another EA,
called differential evolution (DE), was used to optimise the ANNs’ initial
weight in our work. DE is widely used to solve optimisation problems
owing to its simplicity, robustness, and computation efficacy. An
adaptive DE called self-adaptive ensemble-based differential evolution
with enhanced population sizing (SAEDE-EP) was used to optimise the
ANNs’ initial connection weights since the algorithm can adaptively
adjust its parameters: scale factor, crossover rate, mutation strategy and
population size (NP), with minimum reliance on the user to determine
the parameter configurations.

ANNs are computing units inspired by the biological complex neural
structures to solve complex nonlinear relationships (Ebrahimzade et al.,
2020). A commonly used ANN is a multilayer perceptron (MLP) neural
network. Each neural network consists of multilayers of computing units
with activation functions. Input and outputs are directly related to the
input and output layers of an ANN. The hidden layers are located be-
tween the ANN’s input and output layers. The information from one
layer’s neurons to the subsequent layer’s neurons is transformed based
on Eq. (1).

a={(b + wp) €Y

where p is the input, b is the bias, w is the neurons’ connection weights, {
the activation or transfer function, and a is the neurons’ output. Neurons
can use any differentiable transfer function { to generate their output.
The three commonly used transfer functions consist of logsig, tansig and
purelin. The MLP training is carried out by iteratively weighing pro-
cedures from the inputs to the output neurons. After each iteration, the
computed outputs are compared with the real outputs (targets) in the
base of mean squared error (MSE) or other statistical measure criteria for
a data set assigned as the training set. In this process, the connection
weights and bias were modified according to the learning algorithm,
such as backpropagation, to minimise the MSE of the training set in each
iteration. The network’s generalisation during the training phase is
validated with another set of data called validation set. Following the
training phase, the testing phase was performed with previously unused
data in the training step and the unused data is called test set.

Each backpropagation training session begins with different initial
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connection weights and bias, and different data divisions into training,
validation, and test sets. These different conditions can lead to different
solutions for the same problem (Ebrahimzade et al., 2020). The per-
formance of an ANN is affected by uncertainties from its initial
connection weights and the data set partition (Xu et al., 2021).
Considering the risk of affecting the modelling with suboptimal solu-
tions, improving uncertainties derived from initial connection weights
and data set partition are also highly recommended for modelling
improvements.

ANN has three layers: an input layer, a hidden layer and an output
layer. The neurons are named according to the layers: input (in), hidden
(hn) and output (on) neurons. The architecture of an ANN is displayed in
Fig. 1, where IW and LW refer to the connection weight matrices of hn x
in and on x hn dimensions, respectively between the input-hidden and
hidden-output layers. p! with in x 1 dimensions and 52 with on x 1
dimensions refer to the vectors of bias units between the input-hidden
and hidden-output layers. The number of input and output neurons is
determined in quite a straightforward way, as they are based on the
numbers of input and output variables. Hence, only the number of HN
will be determined arbitrarily by a user.

An ANN with evolved initial connection weights learn faster and
better than those with initial random connection weights (Nolfi and
Floreano, 2000). Therefore, an adaptive EA is helpful in optimising the
initial connection weights and bias between the layers of neurons. With
the optimised initial connection weights and bias, the ANN was trained
with fixed architecture and parameters in the evolved ANN model.

Each ANN in the population is evaluated iteratively for a number of
simulation runs. At each time step in a simulation run, an individual
ANN receives the following input and output variables in the PCDD/Fs
modelling. Dividing data into training-validation—test sets is preferable
in training and evaluating an ANN; the training set is supposed to ac-
count for 70% of the data set (Xu et al., 2021). Hence, this study applies
the split ratio of 70:15:15, commonly applied for dividing data into
training, validation, and test sets (Pandey et al., 2016). Since the sample
size in our data is very limited, that is 25, we divided our data set based
on the approximated ratio. The samples used for training and validation
sets are 20, and the test set is 5. The fitness of each neural network is
evaluated iteratively based on its performance in solving the modelling
problem, that is, how low the MSE of the training and validation sets
averaged over several repeated runs. Once the ANNs in the population
were evaluated, SAEDE-EP was used to create the next generation of
ANNs.

3.2. Differential evolution (DE)

Optimising initial connection weights and bias using other compu-
tational intelligence algorithms to solve solid waste-related problems
has received research attention. However, there is a lack of studies on
using evolutionary and PSO algorithms to optimise initial connection
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weights and bias (Xu et al., 2021). The hybrid of ANN and EA to solve a
modelling problem requires the interested user to have knowledge and
experience in both algorithms. Adaptation has been widely used in
setting EA parameters to minimise the reliance on users and algorithms
to solve optimisation problems. Therefore, an adaptive EA called
SAEDE-EP (Budiman et al., 2020) was adopted in our research to evolve
an ANN’s initial connection weights and bias.

The connection weights and bias matrices are transformed into a row
vector and encoded into a chromosome in SAEDE-EP. The row vector’s
length, D, is shown in Eq. (2).

D = (in+1)*hn + (hn+1)*on 2)

Based on the PCDD/Fs modelling, the number of input neurons is
based on the number of inputs: 8 input neurons and 1 output neuron.
The rule of thumb for setting a reasonable NP lies in the dimensionality
of problems, i.e., NP € [5D, 10D], which is based on the suggestion by
Storn and Price (1997), the authors of DE. Therefore, the initial popu-
lation size, NPy is set at approximately 5D.

Assuming that the number of HD is 10 and the variable D equals 501
(i.e., (8 +1)*10 + (10 + 1)*1 = 501), the NPjy;; = 510, is used. The same
procedure determines the NPyy;; for the ANNs with different numbers of
HD except for 5SHN. NP in SAEDE-EP is not constant but dynamically
changes within [5D, 10D].

The variable length for the ANN of 5HN is 51, and the NPj,;; was
supposed to be 255. Instead, NPj,;; = 500 and NP € [500, 600] were used
to increase the population diversity. Large NP can diversify the direction
and magnitude of the difference vector, which is conducive to finding
more potential solutions (Li et al., 2023). Table S4 shows the range of NP
denoted by [NPpin, NPpax] for the ANNs with different numbers of HN.

Given that ANN’s architecture is fixed, IW and LW refer to the
connection weights established between the input-hidden layers and
hidden-output layers, respectively. The bias between the input-hidden
layers and hidden-output layers are represented by 5! and 52. The so-
lutions for IW, LW, 5! and p? are represented by a population of in-
dividuals in SAEDE-EP.

SAEDE-EP begins with an NPjp;; of randomly generated individuals,
yielding different connection weights and bias for a neural network. The
network architecture and its relevant learning parameters are fixed and
identical for all individuals. All networks in the population are then
evaluated for several repeated runs. Once all individuals in the pop-
ulations are evaluated, a new population is created through the differ-
ential mutation, crossover, and selection processes iteratively until a
stopping criterion is achieved. The best individual after achieving the
stopping criterion is used to form the ANN’s initial connection weights
and bias to solve the modelling problem. The fitness, f of individuals in
the population is evaluated based on MSE of training (MSEin) and
validation (MSEyalidate) sets (Eq. (3)).

f = MSEgrain + MSEvalidate (3)

Input Hidden Layer Output Layer
r A ™ - ™~
Xa W —\ > gz
%
X HN x IN C ON x HN ?
X: V3
3 .
);n —> ﬁl j > ﬁz Ym
IN HN x 1 HN ONx1 ON ON
\ J — — _/

Fig. 1. The architecture of an ANN.
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MSEyalidate iS commonly used to monitor an ANN’s generalisation.
Generalisation refers to the ability of the machine learning algorithm to
correctly apply the knowledge it learned to a new situation (Ferro et al.,
2023). Generalisation can be achieved if a machine learning algorithm
can avoid overfitting or overtraining. Overfitting in an ANN means the
algorithms predict well in the training set but fail to reliably predict
unseen data. Minimising the generalisation error is used to ensure an
algorithm’s generalisation. The accuracy of the algorithm on the vali-
dation set is used as the indicator of its generalisation error (LeCun et al.,
1990). Hence, we used cross validation as the predictive basic to
anticipate overfitting in the neural network’s learning. A generalised
neural network should perform appropriately well in training and vali-
dation sets. Thus, MSEyain, and MSEyjidate are used as the fitness criteria
to evaluate the modelling procedure and measure the effect of function
on the DE-ANN optimisation. The model with the MSE value closer to
zero performed better within the proposed models. Given that an ANN
must have the minimum MSE of training and validation sets, the opti-
misation of the ANN’s initial connection weights and bias is a mini-
misation problem.

However, the DE’s performances are affected by the setting of its
control parameters (Parouha and Verma, 2022) consisting of scale fac-
tor, crossover rate, NP and mutation strategy. There is no clear guidance
or generalised rules when determining the parameters to ensure an
acceptable performance (Yang, 2020). Most of the rules are either un-
clear, confusing, or contradicting. Therefore, an adaptive mechanism is
commonly used to set DE’s parameters. SAEDE-EP is one of the DE
variants that operates based on an adaptive mechanism while having
another two parameters, namely, the growth rate range of population
size, R and stagnation threshold, T. T = 30 is used to control the stag-
nation level of SAEDE-EP. Besides T, SAEDE-EP’s parameters can
dynamically change within the options shown in Table S5. The stopping
criterion is either the best-fitness, fpesy < 0.000001 or the maximum
generation, Gpax = 200. NP in SAEDE-EP is limited within [5D, 10D],
with D referring to the total length of connection weights and bias of an
ANN.

3.3. Representation of connection weights and bias in chromosomes

The population of individuals represents the solutions for the
connection weights and bias established between the input-hidden
layers and hidden-output layers, respectively. Fig. 2 demonstrates the
representation of an individual in the population. Therefore, IW, LW, p!
and p? are mapped into an individual’s vector.

W refers to a vector of connection weights and bias units between

the input-hidden layers, mapped as Wy = {Wi_,ﬂ/;,m,fv,lm, ~-,vT/,11N}, as

Individual 1 ' W 1 ‘ W ‘
Individual 2 ' W, 2 Ww 2 ‘
. ° °
L] L] Y
L] L] Y
Individual NP l Wiw, np Wiw, np ‘

| |

Connection weights
and bias for input-
hidden layers

Connection weights
and bias for hidden-
output layers

Fig. 2. Weights for the fixed architecture neural network in chromosome
representation.
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displayed in Fig. 3(a).

Similarly, W refers to a vector of connection weights and bias units

between the hidden-output layers, mapped as Wy = {1711%7 Wy, o, Wons

vAv(ZJN}, as shown in Fig. 3(b). The parameters in, hn and on with

ranges 1 <in <IN, 1 <hn <HN, 1 < on < ON refer to the input, hidden
and output layers’ neurons.

A fixed architecture and parameters of the neural network are used
to model the PCDD/Fs prediction. The networks consist of in, hn and on
neurons. The architecture is illustrated in Fig. 1, where IW and LW refer
to the connection weight matrices of hn x in and on x hn dimensions
respectively, between the input-hidden and hidden-output layers. p!
with in x 1 dimensions and 52 with on x 1 dimensions refer to the
vectors of bias units between the input-hidden and hidden-output layers.

In the experiments, the values of in and on are determined in a
straightforward way as they are based on the numbers of input and
output variables respectively. The values of hn and ANN’s parameters
are set based on the settings in Table S6. The adaptive SAEDE-EP is used
to evolve the connection weights and bias between the input-hidden
layers and hidden-output layers because it can adaptively adjust the
settings of all parameters with minimum reliance on user-specified
parameters.

A fixed architecture of ANN with its relevant parameters is initialised
based on the settings in Table S6. An initial population of individuals
representing the connection weights and bias is generated. Each indi-
vidual solution is mapped into the ANN’s initial connection weights and
bias. With the initial connection weights and bias, the ANN is trained
based on the k-fold validation for several runs. The ANN is evaluated
based on MSE;;,i, and MSEajidate- The fitness of each individual solution
is represented by MSEain, and MSEyqjidate- The population of solutions
underwent the iterative, evolutionary process until the stopping crite-
rion was met. Fig. 4 summarises the flow of the optimisation of the
ANN'’s connection weights and bias based on SAEDE-EP in the evolved
ANN model.

4. Experimental setup

An ANN with the layers in, hn, and on neurons is used to predict
PCDD/Fs emission. Each neural network consists of a MLP with a
backpropagation algorithm. The ANNs are trained with a data set con-
sisting of 8 input variables and 1 output variable. Details on the input
and output variables are shown in Table S7. The input and output var-
iables are in different units. Data for the PCDD/Fs emission prediction
was normalised based on the variables’ minimum and maximum in
Table S7 and the normalised data was used to train the ANNs. The
sample size of the PCDD/Fs emission data is limited, only 25 samples
(Table S7).

Using the range of HN by Xu et al. (2021) as a reference, i.e., 4-20,
the fixed architecture of ANNs that vary in HN are implemented in the
experiments. The four architectures of ANNs consisting of 5, 10, 15, and
20 HN are used in the experiments. With one layer for the input, hidden
and output neurons, the settings of the ANN’s parameters in Table S6 are
based on the work in (Ebrahimzade et al., 2020) as the work also
adopted an EA, that is PSO to evolve the initial connection weights and it
showed promising results. The learning rate for ANNSs, 1, is set as 0.1.
Each connection weight of the neural network ranges in the interval
[—1, 1]. The architectures and parameters of the ANNs in our experi-
ments are summarised in Table S6.

The number of neurons in the input and output layer is fixed, namely
8 input neurons and 1 output neuron, respectively. The HN in the hidden
layers varies among the ANNSs. For a fixed architecture of ANN, e.g., 8
input neurons, 5 hidden neurons and 1 output neuron, each individual
solution for the connection weights and bias generated by SAEDE-EP is
fed to the ANN. Using the fixed parameters in Table S6, the ANN was
trained for 1000 iterations. The MSEs of the training and k-fold
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(b) Mapping of the connection weights and bias units for hidden-output layers.

Fig. 3. Mapping of the connection weights and bias units for both input-hidden and hidden-output layers.

validation sets of the ANN for each run were evaluated. In this study, a
10-fold validation set is used. The MSEs of the training and 10-fold
validation sets were used as the objective function for each individual
solution in the population. The training and evaluation of the ANN are
repeated for all individuals in the population. Hence, the fitness of each
individual solution in the population is represented by MSE4i, and
MSEalidate- Based on the common ratio between training:validation:test,
i.e., 70:15:15 (Pandey et al., 2016), the study divided 25 samples of data
into training and validation sets consisting of 20 samples and the test set
consisting of 5 samples. The 20 samples were used for the 10-fold cross
validation. Thereafter, the ANN trained based on the 10-fold cross
validation was tested on the test set. The population of solutions went
through iterative mutation, crossover and selection until the stopping
criterion was met. The optimisation by SAEDE-EP is to ascertain the

optimal initial connection weights and bias for the ANN in the predictive
stage.

The evolutions of SAEDE-EP to optimise each ANN’s connection
weights and bias are repeated by using the k-th seed numbers, k = 1,2,
---,30. The same 30 random seed numbers were used to evaluate the four
ANN architectures in the experiments. Two stopping criteria were used
in these experiments. First are the pre-specified threshold values (frarger)
for comparison with fyes, and the other is the setting of maximum
generation, Gpax. The evolutionary processes are terminated if fpeg is
better than fiarget (i-€., fbest < frarget). The fiarget value is set as 0.000001 in
these experiments. Or else, the evolutionary process continues until it
reaches Gax = 200. The ANNSs trained with the optimisation of SAEDE-
EP are called evolved ANNs. Using the settings in Table S6 and the same
30 random seed numbers, the ANNs were trained without the
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Fig. 4. Optimisation of an ANN’s connection weights and bias based on SAEDE-EP in the evolved ANN model.

optimisation of SAEDE-EP and they are known as normal ANNs.
5. Result and analysis

The fpest Of the SAEDE-EP for each architecture of ANN refers to the
solutions producing the lowest MSE4in and MSEyajidate. Comparisons of
the five ANN architectures optimised by SAEDE-EP are evaluated based
on fyest and the correlation coefficient, R%. The calculation of R? is based
on Eq. (4). R? shows how well the data fit the predicted model.

Z?L] (Wlfarget _ W?rEdiC[) 2
- N2
N di
S )

R*= )

which, y{*® is the target value, y” redict i< the model’s predicted value

and N is the data set number in the training and testing stages of each
model.

Fig. 5 demonstrates the advancement of modelling by the SAEDE-EP
algorithm in the training phase of ANN in the base of layer weights and
bias and their performance measure trends. The performance measure
trends are based on the fpeg, R? and MSE;¢ trends.

The average of fpege and R? for each ANN model across 30 runs have
been presented in the first two subplots in Fig. 5 to evaluate the

modelling procedure and measure the effect of the connection weights
and bias on SAEDE-EP-ANN optimisation. The ANN model with fyeg
closer to zero and R? closer to one has better performance within the
proposed models. Fig. 5 shows that the ANNs with 15HN have the lowest
foest, <8.359 x 10™*. On the other hand, the ANNs with 5HN, 10HN and
20HN have similar fyest upon the completion of evolution, 9.153 x 1074
~9.539 x 10~% as shown in the first row in Table 1. However, the
difference of f,es¢ between the three ANNs is very small, <3.853 x 1075,

The R? plot shows that the ANN with S5HN has the highest value (R?
=0.974) followed by 15HN (R% = 0.971), 10HN (R? = 0.969) and 20HN
(R? = 0.964). The average MSE s of the ANNs in Fig. 5 shows similar
trends as R%, with 5HN has the lowest value, followed by 15HN, 10HN
and 20HN. The average measures show an interesting finding, which is
the ANN with the lowest fi,.st does not necessarily guarantee the best
result for MSEs; and R%. The ANN of 15HN is associated with the lowest
fhest, but it does not have the lowest MSE s or highest RZ

To understand the effect of the SAEDE-EP’s optimisation on the
ANNs, the best, worst and standard deviation based on fpest, R? and
MSE;es; for the ANNs across 30 runs are evaluated. The results based on
the performance measures are summarised in Table 1 and the lowest fpeg
is highlighted in bold. The results in the table show that 15HN has the
lowest fyes¢ based on the mean, median and worst measurements, but it
does not have the best R? and MSE;es. On the other hand, the ANN of
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Table 1
The statistics of fpesr, R and MSEqes; for the evolved ANNs.

Statistics Measures  Number of hidden neurons
SHN 10HN 15HN 20HN
Mean fhest 9.5388 9.1534 8.3588 E- 9.3077
E-4 E-4 4 E-4
R? 0.97447 0.95858 0.97056 0.96416
MSEest 6.1790 E- 7.4638 7.1184 8.7541
3 E-3 E-3 E-3
Best fest 7.2681 6.1643 6.0598 4.4683 E-
E-4 E-4 E-4 4
R? 0.99376 0.99275 0.98721 0.99530
MSE et 8.5375E-  1.3974 2.0929 1.1048
4 E-3 E-3 E-3
Median fhest 9.7036 8.9204 8.2563 E-  9.6100
E—4 E-4 4 E-4
R? 0.97688 0.97794 0.97709 0.96962
MSEest 5.0682 E-  5.5349 5.7066 7.4753
3 E-3 E-3 E-3
Worst fhest 1.3642 1.3880 1.1129 E-  1.2547
E-3 E-3 3 E-3
R? 0.91429 0.87628 0.89743 0.90949
MSE est 1.9399 E-  3.1526 2.8797 2.2074
2 E-2 E-2 E-2
Standard fhest 1.5243 E-  1.8225 1.5736 1.7193
deviation 4 E—4 E-4 E—4
R? 0.01463 0.02455 0.01898 0.02151
MSE est 3.7896 E-  6.4741 5.2479 5.3879
3 E-3 E-3 E-3

SHN has the best results for R> and MSE;e overall. Results in Table 1
consistently show that the ANN of 5HN produces the lowest MSEes;
based on the measurements of mean, best, median, worst and standard
deviation. In addition, the ANN of 5HN is associated with the highest R?
based on the mean, worst and standard deviation. Based on the

performance measures, it can be concluded that the ANN of 5HN is a
better prediction model among the ANNs.

The best-trained ANNs with and without the SAEDE-EP optimisation
are compared for different HN based on MSEqin + validates MSE¢est and
RZ. The ANNs optimised by SAEDE are known as evolved ANNSs, while
those without SAEDE-EP optimisation are known as normal ANNs. All
normal ANNs have the lower MSE4in + validate than the evolved ANNs
regardless of their HN but it does not guarantee a better MSE.g. Instead,
the evolved ANNs produce lower MSE;es than the normal ANNs. The use
of SAEDE-EP as the optimisation algorithm helped to enhance the ANN’s
generalisation ability even though it is trained with a limited sample
size. As a result, the evolved ANNs have higher R? than the normal
ANNSs. The better measurements between the evolved and ANNs are
highlighted in bold (Table S8).

The matrices of the initial connection weights and bias are extracted
from the best of the evolved ANN of 5HN because it produces the lowest
MSE;est (i.€., 8.53755 x 10~*) and the second highest R? (i.e., 0.99376).
The matrices of connection weights and bias of the ANN of 5HN are
shown in Fig. 6(a). Based on the initial connection weights and bias, the
ANN of 5HN was trained based on the parameters in Table S6. The
optimal connection weights and bias of the feedforward ANN of 5HN
upon the completion of the training are extracted and shown in Fig. 6(b).

6. Conclusion and future work

A hybrid machine learning algorithm comprising a combination of
ANN and SADEE-EP is employed in this study to predict the PCDD/Fs
emissions in peatlands using 25 data. The depth of peat soil, C:N ratio,
chloride content, HA, phenol, 1,2,3-trichlorobenzene, Al and Cu as in-
puts and total concentration of PCDD/Fs as output were used by the
evolved ANN to model PCDD/Fs emission. The PCDD/Fs modelling uses
ANNs of different HN. The strength of the evolved ANN model lies in the
adaptiveness of SAEDE-EP in setting its parameters corresponding to the
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(b) The matrices of the optimal connection weights and bias of the feedforward ANN of SHN.

Fig. 6. The matrices of the optimal connection weights and bias of the feedforward ANN of 5HN.

optimisation of the ANNs’ connection weights and bias. With the
assistance of SAEDE-EP to optimise the initial connection weights and
bias, the evolved 5HN-ANN produces the lowest f,e5; based on the mean,
worst and standard deviation, i.e., 0.97447, 0.91429 and 0.01463. It
also has the lowest MSE . based on the statistical measures. The com-
parison between the best evolved ANN and normal ANN of 5HN in-
dicates that the evolved SHN-ANN produces better MSE . and R% In
conclusion, the evolved ANN can assist in enhancing the prediction of
PCDD/Fs emission with limited data samples and achieve better
generalisation. The limitations of this work could be the accuracy and
performance of the model are constrained by the narrow range of inputs
used in its development. To improve its predictive capability, future
research should focus on collecting more data on PCDD/Fs emissions
from other peat samples, including those from temperate regions.
Accordingly, the model for predicting PCDD/Fs levels in peat can be
updated and re-trained to achieve more reliable results and a wider
scope of application. Moreover, it would be worthwhile to compare the
effectiveness of the existing methods with other models, such as SVM or
DNN.
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